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 Pillowing doublets: refining a mesh to ensure that
faces share at most one edge
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 Abstract

Occasionally one may be confronted by a hexahedral or quadrilateral mesh containi
doublets, two faces sharing two edges. In this case, no amount of smoothing will pro
a mesh with agreeable element quality: In the planar case, one of these two faces w
always have an angle of at least 180 degrees between the two edges.

We describe a robust scheme for refining a hexahedral or quadrilateral mesh to sep
such faces, so that any two faces share at most one edge. Note that this also ensur
two hexahedra share at most one face in the three dimensional case. We have imple
this algorithm and incorporated it into the CUBIT mesh generation environment devel
at Sandia National Laboratories.

1. Introduction

In a quadrilateral or hexahedral mesh, adoublet is defined as two quadrilateral faces tha
share two edges. When this occurs in a mesh, there is something fundamentally wron
the local connectivity: In any geometric embedding of these faces, at least one face
have poor quality. In order to remove the doublet and obtain good element quality, i
necessary to change the local connectivity of the mesh through refinement.

Doublets occasionally arise during the weaving stages of Whisker Weaving[1], and 
wedges are collapsed[2][3]. Plastering[4] and Whisker Weaving both collapse wedg
their final stages, and collapsing wedges can be used to locally coarsen a mesh. Fig
shows that when a mesh is already fairly coarse, collapsing a face (e.g. via a wedge
create a doublet[3]. Another type of poor connectivity that arises is two hexahedra sh

Figure  1. Collapsing a face in an already coarse mesh sometimes creates a doub
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two faces. However, this implies that there are two doublets in the mesh, as seen in
Figure 2. Thus ensuring that no doublets exist also ensures that two hexahedra share
one face.

In a quadrilateral mesh, there is a simpler alternative to what we propose: Doublets m
removed by simply deleting the two shared edges, forming one big quadrilateral out 
two doublet faces. However, this simple scheme is not possible in a hexahedral mes
general, as there is no guarantee that the hexahedra containing the doublet faces a
connected in such a way that they can be combined. This is illustrated in Figure 3.

We describe a robust scheme for eliminating doublets, so that any two faces share a
one edge. This idea works in both two and three dimensions, and we speculate that i
be extended to higher dimensional meshes as well. The basic idea is to refine the m
such a way that the connectivity of the doublet node is increased. The algorithm has
main steps, which are repeated for every face that shares two edges with another fac
we find ashrink set, a group of elements containing one, but not both, of the faces that s

Figure  2. Two hexahedra sharing two faces implies two doublets.

Figure  3. Left: In a quadrilateral mesh, a doublet may be removed by removin
shared edges and merging the doublet faces into one face. Right: In a hexahedra
this is not always possible because the hexahedra containing the doublet faces ca
combined in general.
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two edges. Second, we disconnect the shrink set elements from the elements on its
boundary and geometrically reduce the size of the shrink set. Third, we connect the 
set to its old boundary with a layer of elements. These steps are outlined in Figure 4
three dimensions the connecting layer often resembles a spherical pillow, hence the
pillowing doublets. Performing these three steps is calledpillowing a doublet face.
Performing these three steps for both faces of the doublet is calledpillowing a doublet.If
the input mesh has doublets that are very close together, then the output of the algor
dependent on the order in which the doublet faces are pillowed. At the end of these
operations, the mesh is smoothed.

The algorithm also has an easy explanation in terms of the spatial twist continuum[5
STC. The rest of this paper makes no reference to the STC, so this explanation can
skipped if desired. In the STC, a doublet consists of two vertices connected by two e
see Figure 5. This is also called adegree-2 2-cell[3]. In three dimensions, pillowing the
doublet consists of inserting a twist plane that cuts across these two edges. Choosin
shrink set is equivalent to choosing the set of STC vertices that are on one side of th
plane (i.e. inside the twist plane if it is a sphere).

The remainder of this paper is organized as follows. In section 2 we describe how to c
the shrink set so that the doublet face is always pillowed, and also a heuristic for cho
a large shrink set that leads to good element quality. In section 3 we describe the pr
of disconnecting the shrink set hexes from the surrounding mesh. In section 4 we de
how to insert the pillow layer of elements. In section 5 we analyze the number of he
introduced by our algorithm, and its running time. In section 6 we discuss some furth
variants on the algorithm, and in section 7 we present conclusions.

Figure  4. Pillowing a doublet in a quadrilateral mesh.
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2. Building a shrink set

A doublet is two faces that share exactly two edges. The node common to those edg
called thedoublet node. In each of the two faces, the node opposite the doublet node 
star node. In this section we describe the algorithm for constructing the shrink set for
given star node. The shrink set will contain the doublet face that contains the star node
is the first step in pillowing a given doublet.

There are actually many options for constructing a shrink set that will lead to remova
the doublet. In two dimensions,any set of elements that contains one doublet face but
the other is sufficient. The reason this is sufficient will be evident in section 4. on page
In three dimensions,any set of elements that contains all hexahedra containing one dou
face but not all hexahedra containing the other doublet face is sufficient.In addition, in
order to perform the second step of disconnecting and shrinking the shrink set, for e
point in the shrink set, we require that there is a small neighborhood, open relative t
meshed object, whose intersection with the shrink set is homeomorphic to a ball or h
ball. Based on experience, large sets without sharp angles on their boundary tend to
better quality elements.

The basic scheme that we use is to add all of the elements containing the star node 
set. When star nodes for different doublet nodes are close together, the shrink set is
larger to contain multiple star nodes: if the shrink set contains another star node, the
recursively add all of the elements containing that star node into the set as well. Thi
heuristic gives big, roundish shrink sets, which gives good mesh quality. However, t
satisfy our sufficient condition, we take care that the two star nodes for a given doub
node are never in the same shrink set: If one is in the shrink set, the other is marked
forbidden. We only add the elements containing a star node if these elements do not c
a forbidden node.

Figure  5. The STC interpretation of pillowing doublets. A twist plane that resemb
pillow is inserted so that it surrounds the STC 2- or 3-cell that contains the prima
node. Pillowing twist planes that pass through a common 2- or 3-cell are merged
amoeba-like fashion into one big pillowing twist plane. In this figure, another pillow
twist plane will eventually be added around the other star node to pillow the other do
face.
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The pseudocode for this is as follows:

find_shrink_set( given star_node, return shrink_set)

shrink_set := empty

star_node_list := given star node

do

star_node = pop star_node_list

elements = elements containing star_node

if ( elements don’t contain a forbidden star node )

shrink_set += elements

star_node_list += new star_nodes in elements

while star_node_list is not empty

Note that it is possible that this algorithm returns an empty shrink set. In two dimens
this may occur when a third face shares an edge with both faces of a doublet, as in Fi

A robust solution is to take the shrink set to be the single doublet face containing the
node. Certainly this meets the sufficient condition that the shrink set contains one do
face but not the other: After pillowing, the doublet edges are contained in two differe
quadrilaterals of the pillow layer. This removes the doublet. Angles would be bounde
away from 180 degrees and the local connectivity would appear acceptable, but in f
element quality would still not be very good, as seen in Figure 7 top.

In three dimensions, if the doublet face containing the star node is in the interior of t
meshed object, it is always possible to take the shrink set to be the two hexahedra

containing that doublet face as in Figure 7 bottom. The sufficient condition is satis

by noting that the shrink set can’t contain all hexahedra containing the other doublet
If it did, then at least one of  and  contains both doublet faces. That hexahedra

only two edges (the shared doublet edges) at the doublet node, but a hexahedron ha
edges at every node, a contradiction. Similarly, if the doublet face is on the boundary 
meshed object, it is always possible to take the shrink set to be the single hexahedr
containing it. As in two dimensions, while this solution is robust, it is not ideal from a
element quality standpoint. Element quality would be particularly poor if this solution 
used for many doublets which are near one another.

Figure  6. The shrink set building algorithm fails when an element contains both
nodes of a doublet. The algorithm is retried after progress is made elsewhere in the
In any event, the algorithm can be made robust by merely taking a smaller shrink se

third quad

doublet star nodestar node

h1

h2

h1 h2



s well
ode.
ets are
urns a

h and
ublet

n the
eshed
copy
dition
he
y that
ut has
idered

r in its

l of the
 as in
In practice, if the algorithm returns an empty shrink set for a star node, we defer the
resolution of that star node until all other star nodes are resolved. This heuristic work
in practice: The algorithm initially fails when the mesh is very coarse near the star n
This usually means that other doublets are close by. After some of these close doubl
pillowed the local mesh is often changed enough so that re-running the algorithm ret
good shrink set for the first star node.

3. Disconnect and shrink

In this section we describe how to disconnect the shrink set from the remaining mes
reduce the geometric size of the shrink set. This is the second step of pillowing a do
face.

Given the hexahedra of the shrink set, it is straightforward to determine if a facet is o
boundary of the shrink set (the exception is when a facet lies on the boundary of the m
object; see below). We create a copy of each facet on the shrink set boundary: one 
stays with the shrink set, and the other stays with the remainder of the mesh. The con
that every point in the shrink set has a small neighborhood whose intersection with t
shrink set is homeomorphic to a ball or half-ball ensures that a facet has only one cop
needs to stay with the shrink set. If a star node is on the boundary of the shrink set, b
not yet been pillowed, then the copy that stays with the remainder of the mesh is cons
to be a star node, but the copy that stays with the shrink set is not.

A complication arises when, in two dimensions, the shrink set contains edges on the
boundary of the meshed object. Is such an edge on the boundary of the shrink set, o

Figure  7. These shrink sets are always possible and always lead to the remova
doublet, but element quality could be better by taking larger, rounder shrink sets
Figure 4.

In 2d
after pillowing
both doublet faces
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interior? Figure 8 shows the difference between the two answers. A similar question 
in three dimensions.

In order for the algorithm to remove a doublet face, the doublet face must be conside
be in the interior of the shrink set. Hence, in three dimensions, when a doublet face 
the object boundary it must be considered to be in the interior of the set. For example
are four doublet faces on the surface of the meshed object in Figure 9 Additionally,

care is necessary to determine if a boundary facet or its copy stays on an input s
curve or vertex.

However, occasionally we are presented with a mesh that containssurface doublets. In two
dimensions, a surface doublet is a single face, two of whose edges are constrained t
a straight or near-straight curve bounding the meshed object; see Figure 10. In thre
dimensions, the edges may also lie on a flat or near-flat bounding surface as in Figu
In order to pillow such doublets, it is necessary to consider the facets of the shrink se

Figure  8. Should edges on the boundary of the object be considered to be in the i
of the shrink set (center), or on its boundary (right)? In three dimensions, if a double
lies on the boundary of the meshed object, then we must consider it to be in the inte
the shrink set.

Figure  9. A wire-frame view of the “block-doublet” test problem before (left) and a
(right) pillowing the column of doublets in the center of the block. Two large, cylindr
pillow sheets are added with axis into the paper, one around the upper right an
around the lower left column of star nodes.
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on the meshed object’s boundary to be on the boundary of the shrink set, as in Figu
and Figure 11.

Our solution to this dilemma in three dimensions is to consider an object surface face
on the interior of the shrink set if and only if it contains a star node of the shrink set th
on the object surface. In addition to handling the above two cases, this has the addi
advantage that the surface mesh is only modified when necessary. Unfortunately, th
create surface doublets in rare cases. Our solution is to find and pillow surface doub
a separate pass, after all non-surface doublets have been pillowed.

Geometrically shrinking the set is straightforward. The exact positions are not impor
since the entire mesh will be smoothed later. This step is really just included here to
the description of the algorithm more intuitive, and the code easier to develop.

Figure  10. Pillowing asurface doublet.Here the edges on the boundary of the mesh
object must be considered to be on the boundary of the shrink set.

Figure  11. Pillowing to remove surface doublets in a three dimensional example. L
column of surface doublets exists, with each doublet face containing two edges on th
tom face of the cube. Right, a cylindrical pillow sheet with axis into the paper was in
ed, removing the surface doublets.

surface
doublet



opy on

nd its

nd its

e, and
cause
ns we

d.

 shrink
copies.
hrink

en

 the

ts

 can
hrough
ets can

t can
ivity
ode, in

rted, is
he
d by
4. Connecting with a layer of elements

We place an edge between each node on the boundary of the shrink set  and its c

the remainder of the mesh . Similarly, we place a face between each edge on  a

copy on . In three dimensions, we place a hexahedron between each face on  a

copy on . The layer of elements often resembles a ring in the two-dimensional cas
a spherical pillow in the three dimensional case. However, this is not necessary. Be
large shrink sets without sharp angles give the best element quality, in three dimensio
build layers that can resemble cylinders, tori, or any other type of orientable manifol

Algorithm correctness

If doublet face  is in the shrink set, and its shared edges are on the boundary of the
set, then each shared edge will be split into two and a face inserted between the two 
By construction, all other doublet faces sharing those edges with  are outside the s

set. Hence  now shares only one edge with any other face, and the doublet has be
removed.

5. Output size and running time

Let  be the number of nodes, edges, faces, and hexahedra in the input mesh, and
number of doublet nodes. In this section we show that pillowing doublets produces

 new elements, and can be performed in time proportional to  after an
preprocessing step to find the doublets.

We assume that given a facet  of some dimension, we can obtain the list of  face

containing , or contained by , in time . We further assume that, on average,
be considered to be a small constant compared to the size of the mesh. By stepping t
the mesh faces, and visiting faces that share an edge with the current face, all doubl
thus be found in time .

Similarly, by starting with a star node and visiting containing elements, each shrink se
be found in time proportional to the size of the shrink set, times an average connect
constant. Each star node keeps a list of the other star nodes for the same doublet n
order to be able to mark forbidden nodes quickly. The size of this set is also a small
connectivity constant.

Each shrink set, regardless of whether nearby shrink sets have been previously inse
proportional to the number of star nodes it contains times a connectivity constant. T
number of original star nodes is at most . The number of surface doublets create
pillowing the original star nodes is smaller than the number of original star nodes.
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Disconnecting, copying, and inserting the layer of elements can all be done in time
proportional to the size of the shrink set.

6. More alternatives

The astute reader may have noticed that both star nodes for a doublet are pillowed,
in actuality pillowing one of the star nodes of a doublet is sufficient to ensure that the
doublet is removed. We pillow both doublets, since this gives better element quality.
Pillowing a star node increases the edge degree of every node on its boundary by o
particular, in the two dimensional case, the doublet node had edge degree increase
two to four after pillowing both star nodes.

7. Conclusion

We have given a robust algorithm for refining a hexahedral or quadrilateral mesh so
nodoublets are present, i.e. so that any two faces share at most one edge. In three
dimensions, the surface mesh of the object is only modified if doublet faces are pres
the surface mesh. The algorithm is very general, and may be modified by several heu
for making larger shrink sets in order to get better element quality. The number of ne
elements created is on the order of the number of doublets in the original mesh, tim
connectivity constant. The running time is proportional to the number of new elemen
created, plus time proportional to the size of the original mesh to initially find the doub
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